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●Efforts, requirements and resources will 
be planned

–Implementation efforts
–Test efforts
–etc.

1. Initialization
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●Human resources

–How many developers?
–How many testers?
–How many Q&A?
–How many people for operations?
–etc.

1. Initialization
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●Hardware resources

–How many computers for developers?
–How many computers for testers?
–How many Q&A computers?
–How many computers for operations?
–etc.

1. Initialization
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–Many documents will be produced
●Architecture Documents
●Design Documents
●Test Plans
●etc.

2. Specification
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–The implementation phase starts with a 
„small“ number of developers.
–The „small“ number of developers needs 
something to build the software, cause 
they want to do some tests.
●They start with their IDE for that 
purpose.

3. Implementation
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–Over the time more and more developers 
join the team.
–Now some kind of organization on the 
source code level must be introduced.

4. Project Evolves
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–The requirement by the developers is to 
work as independent as possible without 
any impediments from others.
●The idea of „Modules“ will be born.
●The source tree will be organized based 
on that.

5. Organization
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–Requirements will be organized based 
on the modules
●Every Module-Team will implement the 
given requirements

5. Organization
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The following Subversion structure will 
be the result:

5. Organization
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How to build a defined state of the 
software based on the given structure?

–Build a particular 
tag of the modules?
–Which tags should be 
used?

6. Building Software
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–What you need is a solution to describe a 
state of your software system.

6. Building Software



www.soebes.com 14 

–The following describes a state of your 
application:
●Module1
–Release 1.2.3
●Module2
–Release 1.1.6

6. Building Software
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Introduce some description of what a 
system is defined by a supplemental file, 
let us call it
„release.xml“ and
store it into 
release/trunk

6. Building Software
Solution I
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Pro's

–No change of the current structure 
needed.
–Simply to integrate modules which 
results in simply changing the contents of 
the release.xml file.

6. Building Software
Solution I
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Con's

–No commit on system level possible only 
per module.
–No branching on system level possible 
only per module.
–No merging on system level possible 
only per module.
–release.xml file is hand maintained.

6. Building Software
Solution I
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Con's

–Checkout of the whole system only 
possible by using supplemental tools 
(may be self implemented).
–An integration is not really „integrated“, 
cause no merge has been done.

6. Building Software
Solution I
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Con's

–No support of existing tools for such 
approach.

6. Building Software
Solution I
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Introduce some description of what a 
system is defined of via svn:externals:

6. Building Software
Solution II
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Pro's

–No change of the current structure 
needed.
–Checkout of the whole project simple.
–Tagging can be done via svn commands.

6. Building Software
Solution II
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Con's

–No commit on system level possible only 
per module (limitations of svn:externals).
–No branching/merging on system level 
possible only per module.
–svn:externals are hand maintained.

6. Building Software
Solution II
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Con's

–No comparison between releases on 
system level possible only per module.
–No use of svn log --use-merge-history 
possible

6. Building Software
Solution II
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Change the structure of your project 
according to “best practice” which is  
recommended in Subversion:

6. Building Software
Solution III
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Con's

–Changing of the structure is needed.
–You have to define a branching strategy:
●Integration lines, Release lines etc.
●Branching on system and module base 
etc.

6. Building Software
Solution III
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Pro's

–Checking out of the whole project is 
simple.
–Tagging/Branching/Merging can be done 
via svn commands.
–svn log --use-merge-history can be used.

6. Building Software
Solution III
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What about the dependencies between 
the modules?

–Module1 depends on Module2?

7. Dependencies
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Solution I, II and III:

–Couldn't handle this, because 
dependencies between the modules are 
not handled by the „release.xml“ file nor 
by svn:externals property.

●Note: A dependency could be a pre-build, provided or  runtime 
dependency.

7. Dependencies



www.soebes.com 29 

Solution I, II and III:

–Result: 
●You have to introduce a new file in the 
modules like „dependency.xml“ which 
describes the pre-build dependencies for 
each module.

7. Dependencies
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What kind of build system do you need?

–Maven, Gradle, Ant (+Ivy),
–CMake, SCons, Make...
–Self made ?

8. Build Systems
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Maven 2/3

–Build Life cycle
–Dependency Management on module 
level
–Deployment, Repositories, Versioning 
system
–Release cycle
–Site generation / Reporting

8. Build Systems
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Gradle

–Build Life cycle
–Dependency Management on module 
level (Maven)
–Deployment, Repositories, Versioning 
system (?)
–Release cycle (?)

8. Build Systems
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Ant (+Ivy)

–Dependency Management on module 
level
●Maven like
–Only target driven

8. Build Systems
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CMake, SCons(?), Make...

–No dependency management on module 
level.
–No deployment
–SCons some kind of repository

8. Build Systems
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How to implement features in solution I 
and II?

–In fact not possible only on module level 
but not on system level.
–The integration is done later via an 
integration build.

9. Feature
Implementation
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How to implement features in solution I 
and II?

–Branching only on module level possible.
–If you have many features in different 
modules you have a „Big 
Bang“-Integration or „puzzle-integration“

9. Feature
Implementation
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How to implement features in solution I 
and II?

–“Continuous Integration” (CI) NOT 
possible.
●Only on module level but NOT on system 
level.

9. Feature
Implementation
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How to implement features in solution 
III ?

–Simply create a feature branch to 
implement it. Later merge into a 
release/integration line.
–Integration can be done simply by using 
a merge and a following build.

9. Feature
Implementation
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–Module based development not feature 
oriented.
–Not possible to merge on a application 
level only on module level.
–No view in VCS on the whole system.

10.Conclusion
Solution I, II
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–Feature oriented development simply 
possible by using branching strategy.
–Tagging/Branching/Merging on 
application level via SVN.
–A complete view in VCS on the whole 
system.

10.Conclusion
Solution III
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–[1] Branching strategies

●Subversion Conference 2008
–[2] Maven

●Linux Tag Berlin 2009
–[3] Continous Integration

●Hudson

On-line Sources I

http://www.soebes.de/files/SubConf2008BranchingStrategies.pdf
http://soebes.de/files/LinuxTagBerlin2009Maven2.pdf
http://hudson-ci.org/
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gearconf2010@soebes.com

Thank you for your attention.

Questions?


