
Web Site:

www.soebes.com

Blog:

blog.soebes.com

Email:

info@soebes.com Dipl.Ing.(FH) Karl Heinz Marbaise

Project Organization
vs.

Build- and Configuration
Management

www.soebes.com 2

1.Initialization 10. Conclusion

2.Specification

3.Implementation

4.Project Evolving

5.Organization

6.Building Software

7.Dependencies

8.Build Systems

9.Feature Implementation

Agenda

www.soebes.com 3

●Efforts, requirements and resources will
be planned

–Implementation efforts
–Test efforts
–etc.

1. Initialization

www.soebes.com 4

●Human resources

–How many developers?
–How many testers?
–How many Q&A?
–How many people for operations?
–etc.

1. Initialization

www.soebes.com 5

●Hardware resources

–How many computers for developers?
–How many computers for testers?
–How many Q&A computers?
–How many computers for operations?
–etc.

1. Initialization

www.soebes.com 6

–Many documents will be produced
●Architecture Documents
●Design Documents
●Test Plans
●etc.

2. Specification

www.soebes.com 7

–The implementation phase starts with a
„small“ number of developers.
–The „small“ number of developers needs
something to build the software, cause
they want to do some tests.
●They start with their IDE for that
purpose.

3. Implementation

www.soebes.com 8

–Over the time more and more developers
join the team.
–Now some kind of organization on the
source code level must be introduced.

4. Project Evolves

www.soebes.com 9

–The requirement by the developers is to
work as independent as possible without
any impediments from others.
●The idea of „Modules“ will be born.
●The source tree will be organized based
on that.

5. Organization

www.soebes.com 10

–Requirements will be organized based
on the modules
●Every Module-Team will implement the
given requirements

5. Organization

www.soebes.com 11

The following Subversion structure will
be the result:

5. Organization

www.soebes.com 12

How to build a defined state of the
software based on the given structure?

–Build a particular
tag of the modules?
–Which tags should be
used?

6. Building Software

www.soebes.com 13

–What you need is a solution to describe a
state of your software system.

6. Building Software

www.soebes.com 14

–The following describes a state of your
application:
●Module1
–Release 1.2.3
●Module2
–Release 1.1.6

6. Building Software

www.soebes.com 15

Introduce some description of what a
system is defined by a supplemental file,
let us call it
„release.xml“ and
store it into
release/trunk

6. Building Software
Solution I

www.soebes.com 16

Pro's

–No change of the current structure
needed.
–Simply to integrate modules which
results in simply changing the contents of
the release.xml file.

6. Building Software
Solution I

www.soebes.com 17

Con's

–No commit on system level possible only
per module.
–No branching on system level possible
only per module.
–No merging on system level possible
only per module.
–release.xml file is hand maintained.

6. Building Software
Solution I

www.soebes.com 18

Con's

–Checkout of the whole system only
possible by using supplemental tools
(may be self implemented).
–An integration is not really „integrated“,
cause no merge has been done.

6. Building Software
Solution I

www.soebes.com 19

Con's

–No support of existing tools for such
approach.

6. Building Software
Solution I

www.soebes.com 20

Introduce some description of what a
system is defined of via svn:externals:

6. Building Software
Solution II

www.soebes.com 21

Pro's

–No change of the current structure
needed.
–Checkout of the whole project simple.
–Tagging can be done via svn commands.

6. Building Software
Solution II

www.soebes.com 22

Con's

–No commit on system level possible only
per module (limitations of svn:externals).
–No branching/merging on system level
possible only per module.
–svn:externals are hand maintained.

6. Building Software
Solution II

www.soebes.com 23

Con's

–No comparison between releases on
system level possible only per module.
–No use of svn log --use-merge-history
possible

6. Building Software
Solution II

www.soebes.com 24

Change the structure of your project
according to “best practice” which is
recommended in Subversion:

6. Building Software
Solution III

www.soebes.com 25

Con's

–Changing of the structure is needed.
–You have to define a branching strategy:
●Integration lines, Release lines etc.
●Branching on system and module base
etc.

6. Building Software
Solution III

www.soebes.com 26

Pro's

–Checking out of the whole project is
simple.
–Tagging/Branching/Merging can be done
via svn commands.
–svn log --use-merge-history can be used.

6. Building Software
Solution III

www.soebes.com 27

What about the dependencies between
the modules?

–Module1 depends on Module2?

7. Dependencies

www.soebes.com 28

Solution I, II and III:

–Couldn't handle this, because
dependencies between the modules are
not handled by the „release.xml“ file nor
by svn:externals property.

●Note: A dependency could be a pre-build, provided or runtime
dependency.

7. Dependencies

www.soebes.com 29

Solution I, II and III:

–Result:
●You have to introduce a new file in the
modules like „dependency.xml“ which
describes the pre-build dependencies for
each module.

7. Dependencies

www.soebes.com 30

What kind of build system do you need?

–Maven, Gradle, Ant (+Ivy),
–CMake, SCons, Make...
–Self made ?

8. Build Systems

www.soebes.com 31

Maven 2/3

–Build Life cycle
–Dependency Management on module
level
–Deployment, Repositories, Versioning
system
–Release cycle
–Site generation / Reporting

8. Build Systems

www.soebes.com 32

Gradle

–Build Life cycle
–Dependency Management on module
level (Maven)
–Deployment, Repositories, Versioning
system (?)
–Release cycle (?)

8. Build Systems

www.soebes.com 33

Ant (+Ivy)

–Dependency Management on module
level
●Maven like
–Only target driven

8. Build Systems

www.soebes.com 34

CMake, SCons(?), Make...

–No dependency management on module
level.
–No deployment
–SCons some kind of repository

8. Build Systems

www.soebes.com 35

How to implement features in solution I
and II?

–In fact not possible only on module level
but not on system level.
–The integration is done later via an
integration build.

9. Feature
Implementation

www.soebes.com 36

How to implement features in solution I
and II?

–Branching only on module level possible.
–If you have many features in different
modules you have a „Big
Bang“-Integration or „puzzle-integration“

9. Feature
Implementation

www.soebes.com 37

How to implement features in solution I
and II?

–“Continuous Integration” (CI) NOT
possible.
●Only on module level but NOT on system
level.

9. Feature
Implementation

www.soebes.com 38

How to implement features in solution
III ?

–Simply create a feature branch to
implement it. Later merge into a
release/integration line.
–Integration can be done simply by using
a merge and a following build.

9. Feature
Implementation

www.soebes.com 39

–Module based development not feature
oriented.
–Not possible to merge on a application
level only on module level.
–No view in VCS on the whole system.

10.Conclusion
Solution I, II

www.soebes.com 40

–Feature oriented development simply
possible by using branching strategy.
–Tagging/Branching/Merging on
application level via SVN.
–A complete view in VCS on the whole
system.

10.Conclusion
Solution III

www.soebes.com 41

–[1] Branching strategies

●Subversion Conference 2008
–[2] Maven

●Linux Tag Berlin 2009
–[3] Continous Integration

●Hudson

On-line Sources I

http://www.soebes.de/files/SubConf2008BranchingStrategies.pdf
http://soebes.de/files/LinuxTagBerlin2009Maven2.pdf
http://hudson-ci.org/

www.soebes.com 42

gearconf2010@soebes.com

Thank you for your attention.

Questions?

