SotlBes

SoftwareEntwicklung » Beratung » Schulung

Project Organization
VS.

Build- and Configuration
Management




1.Initialization 10. Conclusion
2.Specification

3.Implementation

4 .Project Evolving

5.0rganization

6.Building Software
7.Dependencies

8.Build Systems
9.Feature Implementation



Efforts, requirements and resources will
be planned

-Implementation efforts
-Test efforts
-etc.



Human resources

-How many developers?

-How many testers?

-How many Q&A?

-How many people for operations?
-etc.



eHardware resources

-How many computers for developers?
-How many computers for testers?
-How many Q&A computers?

-How many computers for operations?
-etc.



-Many documents will be produced
*Architecture Documents

*Design Documents

*Test Plans

*etcC.



-The implementation phase starts with a
,Ssmall”“ number of developers.

-The ,,small”“ number of developers needs
something to build the software, cause
they want to do some tests.

*They start with their IDE for that
purpose.



-Over the time more and more developers
join the team.

-Now some kind of organization on the
source code level must be introduced.



-The requirement by the developers is to
work as independent as possible without
any impediments from others.

*The idea of , Modules” will be born.

*The source tree will be organized based
on that.



-Requirements will be organized based
on the modules

Every Module-Team will implement the
given requirements



The following Subversion structure will

be the result:

= ﬁ roak

= |2 modulet
() branches
ﬁ tags
() trunk,

= 5 modulez
() branches
ﬁ tags
() trunk,



How to build a defined state of the
software based on the given structure?

-Build a particular? -om
rmodulel
tag of the modules: e e
. ) tags
~-Which tags should be B ok
used? N hlgdll;iiches
[ﬁltags
) trunk



-What you need is a solution to describe a
state of your software system.




-The following describes a state of your
application:

Modulel

-Release 1.2.3
eModule?2

-Release 1.1.6



Introduce some description of what a
system is defined by a supplemental file,
let us call it = OE

= 125 modulel

7 re].ease .Xm]. “ and |00 branches

ey . P tags
store 1t into & trunk
= 123 modulez
release/trunk I branches
- ) kags

1) trunk
= 1) release
I0) branches
[f:"ﬂ Lags
1) trunk




Pro's

-No change of the current structure
needed.

-Simply to integrate modules which
results in simply changing the contents of
the release.xml file.



6. Building Software
Solution I

Con's
-No commit on system level possible only
per module.

-No branching on system level possible
only per module.

-No merging on system level possible
only per module.

-release.xml file is hand maintained.

www.soebes.com 17



Con's

-Checkout of the whole system only
possible by using supplemental tools
(may be self implemented).

-An integration is not really , integrated”,
cause no merge has been done.



Con's

-No support of existing tools for such
approach.



Introduce some description of what a
system is defined of via svn:externals:

=0
= 125 modulel
|00 branches
| ) tags
1) trunk
= 123 modulez
I0) branches
- ) kags
1) trunk
= 1) release
I0) branches
[f:"ﬂ Lags
1) trunk




Pro's

-No change of the current structure
needed.

-Checkout of the whole project simple.
-Tagging can be done via svnh commands.



6. Building Software
Solution II

Con's

-No commit on system level possible only
per module (limitations of svn:externals).

-No branching/merging on system level
possible only per module.

-svn:externals are hand maintained.

www.soebes.com

22



Con's

-No comparison between releases on
system level possible only per module.

-No use of svn log --use-merge-history
possible



Change the structure of your project
according to “best practice” which is
recommended in Subversion:

= Ei Foak = Ei
= h module I0) branches
I0) branches ) tags
5) tags = I3 trunk,
) trunk ) module1
= 15 modulez ) modulez
I0) branches
Iﬁ tags
150 krunk,



Con's

-Changing of the structure is needed.
-You have to define a branching strategy:

‘Integration lines, Release lines etc.

Branching on system and module base
etc.



Pro's

-Checking out of the whole project is
simple.

-Tagging/Branching/Merging can be done
via svn commands.

-svn log --use-merge-history can be used.



What about the dependencies between
the modules?

-Modulel depends on Module2?



Solution I, II and III:

-Couldn't handle this, because
dependencies between the modules are
not handled by the ,release.xml” file nor
by svn:externals property.

*Note: A dependency could be a pre-build, provided or runtime
dependency.



Solution I, II and III:
-Result:

*You have to introduce a new file in the
modules like ,,dependency.xml” which

describes the pre-build dependencies for
each module.



What kind of build system do you need?

-Maven, Gradle, Ant (+Ivy),
-CMake, SCons, Make...
-Self made ?



Maven 2/3

-Build Life cycle

-Dependency Management on module
level

-Deployment, Repositories, Versioning
system

-Release cycle
-Site generation / Reporting



Gradle

-Build Life cycle

-Dependency Management on module
level (Maven)

-Deployment, Repositories, Versioning
system (?)

-Release cycle (?)



Ant (+Ivy)

-Dependency Management on module
level

Maven like
-Only target driven



CMake, SCons(?), Make...

-No dependency management on module
level.

-No deployment
-SCons some kind of repository



How to implement features in solution I
and II?

-In fact not possible only on module level
but not on system level.

-The integration is done later via an
integration build.



How to implement features in solution I
and II?

-Branching only on module level possible.

-If you have many features in different
modules you have a ,Big
Bang“-Integration or ,puzzle-integration”



How to implement features in solution I
and II?

-“Continuous Integration” (CI) NOT
possible.

*Only on module level but NOT on system
level.



9. Feature
Implementation

How to implement features in solution
IIT ?

-Simply create a feature branch to
implement it. Later merge into a
release/integration line.

-Integration can be done simply by using
a merge and a following build.

www.soebes.com

38



-Module based development not feature
oriented.

-Not possible to merge on a application
level only on module level.

-No view in VCS on the whole system.



-Feature oriented development simply
possible by using branching strategy.

-Tagging/Branching/Merging on
application level via SVN.

-A complete view in VCS on the whole
system.



-[1] Branching strategies

Subversion Conference 2008
-[2] Maven

Linux Tag Berlin 2009
-[3] Continous Integration
*Hudson


http://www.soebes.de/files/SubConf2008BranchingStrategies.pdf
http://soebes.de/files/LinuxTagBerlin2009Maven2.pdf
http://hudson-ci.org/

gearcont2010@soebes.com

Thank you for your attention.



